Description of motion	d-t graph	च-t graph	Velocity $(+1-10)$	$\begin{aligned} & \text { Acceleration } \\ & (+1-10) \end{aligned}$	Example
Constant velocity forward					
Constant velocity backwards					
Speeding up f:orward					
Speeding up backwards					
Slowing down forward					
Slowing down backwards					
			0	$+$	\cdots
			0	-	

Shapes of Kinematic Graphs

Exercise 1-4:
Fill in the shape of the missing graph in each of the following set of three.
dyst
vvs t
avst
rest.

1

 L.

| constant
 riegative
 accel.\quadslowing down
 +ve direction |
| :--- | :--- |

Worksheel: Graphs

Sketch the $d-t, v-t$ and $a-t$ graphs for each of the following motions. In each case, (i) assume that the position of the object is $d=0$ when the time is $t=0$, unless otherwise stated, and (ii) take the direction of the initial part of the motion to be the positive direction for your graphs.

1. Initially at a height $h>0$, a ball falls freely from rest, hits the ground, then rebounds to a maximum height less than h, stops momentarily before falling again.

2. Initially at the edge of a cliff, a rock is thrown vertically upwards and then, in the downward motion from the maximum beight, reaches the sea below the cliff.

3. A car on a highway initially moving at a constant speed, and then, on observing a police car passing by, starts to slow down with a constant deceleration.

4. A police car initially moving at a constant speed, and then, on obserying a speeding car, startsatospeed up with a constant acceleration in chase of the speeder.

Describe the motion of the car with the following $\overrightarrow{v-t}$ graph. Assume that $[\mathrm{E}]$ is positive.

Sketch the corresponding $\vec{d}-t$ and $\vec{a}-t$ graphs.

Describe the motion of the car with the following $\vec{v}-t$ graph. Assume that $[E]$ is positive.

Sketch the corresponding $\vec{d}-t$ and $\vec{a}-t$ graphs.

